Tannakian Category
   HOME

TheInfoList



OR:

In mathematics, a Tannakian category is a particular kind of
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left a ...
''C'', equipped with some extra structure relative to a given
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''K''. The role of such categories ''C'' is to approximate, in some sense, the category of
linear representation Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essenc ...
s of an
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Ma ...
''G'' defined over ''K''. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
. The name is taken from
Tadao Tannaka was a Japanese mathematician who worked in algebraic number theory. Biography Tannaka was born in Matsuyama, Ehime Prefecture on December 27, 1908. After receiving a Bachelor of Science in mathematics from Tohoku Imperial University in 1932, he ...
and
Tannaka–Krein duality In mathematics, Tannaka–Krein duality theory concerns the interaction of a compact topological group and its category of linear representations. It is a natural extension of Pontryagin duality, between compact and discrete commutative topologic ...
, a theory about
compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
s ''G'' and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by
Pierre Deligne Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord P ...
, and some simplifications made. The pattern of the theory is that of
Grothendieck's Galois theory In mathematics, Grothendieck's Galois theory is an abstract approach to the Galois theory of fields, developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of algebraic geometry. It provides, in ...
, which is a theory about finite
permutation representation In mathematics, the term permutation representation of a (typically finite) group G can refer to either of two closely related notions: a representation of G as a group of permutations, or as a group of permutation matrices. The term also refers ...
s of groups ''G'' which are profinite groups. The gist of the theory, which is rather elaborate in detail in the exposition of Saavedra Rivano, is that the
fiber functor In category theory, a branch of mathematics, a fiber functor is a faithful ''k''-linear tensor functor from a tensor category to the category of finite-dimensional ''k''-vector spaces. Definition A fiber functor (or fibre functor) is a loose conc ...
Φ of the Galois theory is replaced by a tensor functor ''T'' from ''C'' to ''K''-Vect. The group of
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
s of Φ to itself, which turns out to be a profinite group in the Galois theory, is replaced by the group (''a priori'' only a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
) of
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
s of ''T'' into itself, that respect the tensor structure. This is by nature not an algebraic group, but an
inverse limit In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can ...
of algebraic groups ( pro-algebraic group).


Formal definition

A neutral Tannakian category is a rigid abelian
tensor category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left an ...
, such that there exists a ''K''-tensor functor to the category of finite dimensional ''K''-vector spaces that is exact and faithful.


Applications

The construction is used in cases where a
Hodge structure In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structur ...
or l-adic representation is to be considered in the light of group representation theory. For example, the
Mumford–Tate group In algebraic geometry, the Mumford–Tate group (or Hodge group) ''MT''(''F'') constructed from a Hodge structure ''F'' is a certain algebraic group ''G''. When ''F'' is given by a rational representation of an algebraic torus, the definition of ' ...
and motivic Galois group are potentially to be recovered from one
cohomology group In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
or
Galois module In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring ...
, by means of a mediating Tannakian category it generates. Those areas of application are closely connected to the theory of
motive Motive(s) or The Motive(s) may refer to: * Motive (law) Film and television * ''Motives'' (film), a 2004 thriller * ''The Motive'' (film), 2017 * ''Motive'' (TV series), a 2013 Canadian TV series * ''The Motive'' (TV series), a 2020 Israeli T ...
s. Another place in which Tannakian categories have been used is in connection with the Grothendieck–Katz p-curvature conjecture; in other words, in bounding
monodromy group In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of ''mono ...
s. The Geometric Satake equivalence establishes an equivalence between representations of the
Langlands dual In representation theory, a branch of mathematics, the Langlands dual ''L'G'' of a reductive algebraic group ''G'' (also called the ''L''-group of ''G'') is a group that controls the representation theory of ''G''. If ''G'' is defined over a fie ...
group ^L G of a
reductive group In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direct ...
''G'' and certain equivariant
perverse sheaves The mathematical term perverse sheaves refers to a certain abelian category associated to a topological space ''X'', which may be a real or complex manifold, or a more general topologically stratified space, usually singular. This concept was intro ...
on the affine Grassmannian associated to ''G''. This equivalence provides a non-combinatorial construction of the Langlands dual group. It is proved by showing that the mentioned category of perverse sheaves is a Tannakian category and identifying its Tannaka dual group with ^L G.


Extensions

has established partial Tannaka duality results in the situation where the category is ''R''-linear, where ''R'' is no longer a field (as in classical Tannakian duality), but certain
valuation ring In abstract algebra, a valuation ring is an integral domain ''D'' such that for every element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ''F'' suc ...
s. showed a Tannaka duality result if ''R'' is a
Dedekind ring In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
. has initiated the study of Tannaka duality in the context of
infinity-categories In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. T ...
.


References

* * * * * *


Further reading

*M. Larsen and R. Pink. Determining representations from invariant dimensions. Invent. math., 102:377–389, 1990. {{Category theory Monoidal categories Algebraic groups Duality theories